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1. ABSTRACT 
The Cross-track Infrared Sounder (CrIS), like most Fourier Transform spectrometers, can be sensitive to mechanical 
disturbances during the time spectral data is collected.  The Michelson interferometer within the spectrometer modulates 
input radiation at a frequency equal to the product of the wavenumber of the radiation and the constant optical path 
difference (OPD) velocity associated with the moving mirror.  The modulation efficiency depends on the angular 
alignment of the two wavefronts exiting the spectrometer.  Mechanical disturbances can cause errors in the alignment of 
the wavefronts which manifest as noise in the spectrum.  To mitigate these affects CrIS will employ a laser to monitor 
alignment and dynamically correct the errors.  Additionally, a vibration isolation system will damp disturbances 
imparted to the sensor from the spacecraft.  Despite these efforts, residual noise may remain under certain conditions.  
Through simulation of CrIS data, we demonstrated an algorithmic technique to correct residual dynamic alignment 
errors.  The technique requires only the time-dependent wavefront angle, sampled coincidentally with the interferogram, 
and the second derivative of the erroneous interferogram as inputs to compute the correction.  The technique can 
function with raw interferograms on board the spacecraft, or with decimated interferograms on the ground.  We were 
able to reduce the dynamic alignment noise by approximately a factor of ten in both cases.  Performing the correction on 
the ground would require an increase in data rate of 1-2% over what is currently planned, in the form of 8-bit digitized 
angle data.   
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2. BACKGROUND 
CrIS will fly as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS).  The first 
satellite is scheduled for launch around 2010.  NPOESS is a tri-agency venture between NOAA, NASA, and DoD, 
which merges civilian (POES) and defense (DMSP) polar meteorological satellite programs onto a single platform.  The 
NPOESS satellites will eventually replace both two-satellite constellations.  The NPOESS constellation will operate in 
an 833 km, 98.7o inclination, near sun-synchronous orbit.  In 1999, ITT Industries in Ft. Wayne, IN was awarded the 
contract to build CrIS, the atmospheric sounder.  The interferometer is being built by ABB Bomem in Quebec City.  
Meeting demanding noise performance requirements mandates careful sensor design to achieve a detection-limited 
system.1,2   One potential concern with the CrIS is residual noise due to mechanical disturbances imparted to the 
Michelson interferometer from within the sensor and spacecraft to which it is affixed.   
 
Mechanical disturbances cause dynamic errors in the velocity and alignment of the moving mirror within the 
interferometer.  Dynamic velocity fluctuations cause the signal frequency to jitter slightly during the time an 
interferogram is collected.  A small error in the interferogram is produced due to small changes in the frequency 
response of electrical components in the signal chain.  This error is mitigated by isolating the sensor from mechanical 
disturbances and by proper electrical design.  Dynamic alignment (DA) fluctuations cause the modulation efficiency to 
jitter during the time an interferogram is collected.  A small error in the interferogram is produced due to these gain 
fluctuations.  This error is mitigated by isolating the sensor from mechanical disturbances and by implementing a 
control system to maintain alignment.  The current study focuses on DA errors, and potential algorithmic correction 
techniques. 
 

This work was sponsored by the Department of the Air Force under Air Force Contract No. F19628-00-C-0002. 
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government. 



2.1 The Modulation Interferogram 
The modulated interferogram, I(z), produced at the output of the CrIS sensor can be written:  
 

( ) duzuzuSc∫
∞

+=
0

)2cos(,) φπzI (  
(2.1) 

AGA τρΩ
2
1c =   and    ( )( ) ( )( )zuMzVuHuFuBzuS β,,)()(),( = . 

 
S(u,z) is the product of the incident radiance (scene plus background) , B(u), times the instrument response function, 
F(u), the magnitude of the band pass frequency response, H(u,V(z)), and the modulation efficiency, M(u,β(z)).  I(z) is 
integrated over all input optical frequencies, u and given as a function of the moving mirror position, z.  The mirror 
position is tracked using a visible or near-infrared laser reference system.  The output of the narrow frequency laser 
radiation through the interferometer is a sinusoidal function of z.  The interferogram is sampled at constant position 
intervals, i.e., at the zero-crossings of the laser sinusoid.  The constant, c, in equation (2.1) includes the aperture area 
(A), field of view (Ω), peak transmittance (τ), detector responsivity (ρ), and electronics gain (GA) of the instrument.  
The instrument response function, F(u), is the total spectral response of the instrument due to optics, filters, and the 
detector.  The electrical frequency out of the detector, f, given wavenumber, u, is the product of the wavenumber times 
the optical-path-difference (OPD) velocity, V, f = uV.  The phase, φ, is relative to the laser reference signal and contains 
all shifts due to electronics and any error in the estimated zero path distance reference, ZPD, i.e., the z = 0 point.  The 
modulation efficiency is a gain term derived from angular alignment of the wavefronts, β(z), combined at the output of 
the interferometer.  
 
 
2.2 Dynamic Alignment Errors 
The modulation efficiency is a function of both wavenumber and mirror position when mechanical disturbances are 
uncontrolled within the interferometer.  The jitter term is derived by calculating the dip in the mean intensity over a 
circular exit aperture due to an angle between the two interfering wavefronts: 
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The argument of the Bessel function, J1, contains the wavefront tilt β(z), the stop radius, a, and the wavenumber.  On 
CrIS, β(z) is expected to be less than 10 microradians, the stop radius is 4 cm, and the maximum wavenumber is 2500 
cm-1.  The maximum argument of the Bessel function using these values is approximately 0.0628.  The Bessel function 
can then be expanded using a power series to:
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We drop the third and higher terms which do not contribute much to the summation.  Neglecting dynamic velocity 
errors, the expanded expression for the modulated interferogram becomes: 
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The tilt angle, β, is the root sum of the x-tilt, βx, and y-tilt, βy, components: 
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Each component is assumed to be a normally distributed random function.  The last term in equation (2.4) is a non-
linear error caused by a time dependent alignment disturbance. The error is proportional to the square of the 



wavenumber and the square of the wavefront tilt angle.  The modulated interferogram can be written in terms of the 
error free interferogram, Io(z), plus an error term δI(z). 
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The objective of this work is to recover Io(z) given I(z) and β(z), i.e, determine δI(z) and add it to Io(z). 
 
 

3. SIMULATION OF RAW AND DECIMATED CRIS INTERFEROGRAMS 
In the absence of the appropriate CrIS data for development of DA jitter correction techniques¥, we used an existing 
interferogram simulator.  It is a computer simulation written in MATLAB, and closely emulates data collected from 
engineering units.  Additionally, some phenomena not expected to manifest in the sensor, but potentially problematic 
for correction techniques were included to test the robustness of the correction.  The simulation included the effects of 
photon shot noise, electronics noise, 1/f noise, response non-linearity, optical dispersion, background flux, self-
apodization due to the use of an extended (on-axis) detector, ghosting, and quantization.  Sampling errors due to 
dynamic velocity fluctuations were not included in this stage of development.  Interferograms were constructed directly 
in the time domain and dimensioned as the true operational CrIS interferograms.  
  
CrIS can collect a raw interferogram from each detector in three spectral bands every 200 milliseconds.  There are nine 
detectors per spectral band.  The bands cover between 650 – 2552 cm-1, and are classified as long-wave (LW), mid-
wave (MW), and short-wave (SW) infrared bands.  Raw interferograms are detected with HgCdTe detectors, amplified, 
filtered, and digitized.  The raw interferograms are intentionally highly over-sampled to minimize quantization noise 
and high frequency noise aliasing.  The over-sampled interferograms are decimated (digitally filtered with a complex 
FIR digital filter, and then down-sampled) for communication to the ground.  Table 3.1 gives the raw sampling and 
decimation parameters for each band.   
 

Table 3.1  CrIS Raw Interferogram Sampling and Decimation Parameters 

BAND   
  LW MW SW 
Band (cm-1) 650-1095 1210-1750 2155-2550
Maximum OPD (cm) ±0.8035 ±0.4092 ±0.2015 
Sampling Interval (nm) 775 775 775 
Raw Samples (N) 20736 10560 5200 
Digitization (bits) 14 12 12 
Decimation Factor (K) 24 20 26 
Decimated Samples (L) 864 528 200 

 
 
In this work, we simulated LW band interferograms, several mechanical disturbance scenarios, and correction 
performance for three possible implementations.  Figure 3.1 shows the simulated raw and decimated interferograms and 
the associated spectra.  The scene radiance used to generate the interferograms was simulated from mid-latitude TIGR 
data.  The spectra are calculated directly by Fast Fourier Transforms (FFTs) of the simulated interferograms.  In each 
case the appropriate shift was applied to the spectra for presentation. 
 

                                                 
¥ Earlier feasibility work demonstrated key concepts using SW data collected at Telops Inc.  
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Figure 3.1 Simulated A. raw interferogram, B. raw spectrum C. decimated interferogram, and D. decimated spectrum.  
Interferograms are shown over the full OPD range and expanded around the peak. 

 
The complex FIR filter used in the simulation was similar to the filter that will be used operationally, but perhaps lower 
performing.  Figure 3.2 shows the magnitude response of the filter plotted vs. wavenumber, along with the real and 
imaginary coefficients, b, plotted vs. index number, n.  The CrIS LW band is indicated with lines between 650 and 1095 

cm-1.  The filter provides approximately 
62 dB suppression of out-of-band noise 
prior to the down-sampling operation.  
After filtering the interferogram is down-
sampled by 24 to produce an 864 element, 
complex interferogram. 
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Six mechanical disturbance cases were 
considered in this work.  The DA 
wavefront power spectra for each scenario 
are shown in Figure 3.3.  Power spectra 
centered at baseband were derived by low-
pass filtering a random error with a 4-pole 
Butterworth filter.  The -3 dB cutoff was 
set to 15 Hz, 150 Hz, and 250 Hz.  The 
band-limited  spectra were then modulated 
at 450 Hz to simulate a tone.  The RMS 
error for each case was approximately 5-
10x10-6 radians.  In addition to the 
dynamic error, an 8x10-6 radian static error 
was simulated.  Simulated angle data were 
noise-free and quantized between 6- and 
12-bits to model down-linked data.  All 
computations were 64-bit floating point 
operations. 

Figure 3.2  A.  Magnitude of the complex FIR Filter applied to the interferogram 
prior to down-sampling. B. Real and C. Imaginary coefficients. 
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Figure 3.3.  DA error jitter spectra for six case studies considered in this work: 15, 150, and 250 Hz centered at baseband (A) and at 
450 Hz (B).  The RMS error for each case was between 5 and 10 microradians. 

The effectiveness of the correction can be determined by comparing the spectral noise for uncorrected and corrected 
interferograms to the jitter-free case.  In each case, the simulation followed the CrIS two-point complex calibration 
procedure described in [3].   The reference blackbody radiances used for calibration were 0oC and 37oC.  The noise 
equivalent delta radiance, NEdN, was calculated as the standard deviation of the calibrated spectra in each spectral bin.  
Figure 3.4 shows the calculated NEdN for DA jitter case, and the case with no jitter.  Detector noise dominates the 
NEdN when DA jitter is not present.  Twenty interferograms were considered in each case.  Additionally, the noise 
correlation matrix was calculated to determine the mechanism of the dominant noise source in each spectral bin.  Unlike 

detector or electronics noise, 
which in general are 
uncorrelated, dynamic 
alignment jitter noise is highly 
correlated from channel to 
channel.   Figure 3.5 shows a 
graphical image representation 
of the noise correlation matrix 
for three case studies: No DA 
jitter, 150 Hz Baseband jitter, 
and 150 Hz jitter modulated at 
450 Hz.   In each case, the 
matrix diagonal is identically 
one (deep red).  Random noise 
is completely uncorrelated 
between channels and, if 
dominant, the matrix value is 
zero (deep blue).  DA jitter 
noise is highly correlated and, if 
dominant, the matrix value is 
one (deep red).  Dynamic 
alignment errors are dominant 
throughout most of the 
spectrum when not corrected. 
 

Figure 3.4  NEdN of interferograms corrupted with dynamic wavefront alignment 
jitter.  The NEdN is plotted for the case when no error is present (black) and each 
of the jitter power spectra described in section 3. 
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Figure 4.1  A. An interferogram (black) plotted with the 250 Hz wavefront angle (blue), around the ZPD peak.  B. The measured 
error (black line) compared with the calculated correction (red points). 
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4.2 Approximation of the DA Error on Decimated Interferograms 
The decimation process is designed to deliberately alias the spectral content of the interferogram to a narrower range in 
a way that allows unambiguous reconstruction of the spectrum.  The band-limited discrete-time interferogram Ib(n), is a 
convolution of the measured interferogram and the filter coefficients: 

(4.3) 
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where NF is the filter length.  By substituting equation (4.1) into the above equation, we can estimate Ib(n) from: 
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The decimation process is completed by down-sampling Ib(n) by the decimation factor, K.  If the extent of the filtered 
signal spectra is less than the sampling frequency of the re-sampled sequence, the entire spectrum is shifted to the new 
baseband.   The down-sampled and filtered interferogram, Id(n), is given by: 
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After decimation, implementing the correction technique becomes more complex.  The technique described in section 
4.1 does not work directly with decimated interferograms.  The simple, numerical second derivative calculation fails 
when using under-sampled data. We tested two options to mitigate this problem:  

1. Recover the original, undecimated interferogram as closely as possible and proceed as described in section 4.1.  
2. Use an analytical method for calculating the second derivative directly from the decimated interferogram. 

 

4.2.1 Up-Sampling to Recover an Estimate of the Undecimated Interferogram 
We recovered an estimate of the undecimated spectrum by up-sampling the decimated interferogram (with zeros) by the 
decimation factor K, and scaling by K: 
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where L is the length of the decimated interferogram sequence and Ius(n) is the up-sampled interferogram sequence of 
length N=KL.  The original, undecimated spectrum was then estimated by windowing the associated spectrum: 
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The low and high indices defining the window, klow and khigh, 
were derived from the width of the decimated spectrum: 
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where ulow = 602 cm-1 is the minimum wavenumber in the 
decimated spectrum, uhigh= 1142 cm-1 is the maximum, and du 
= 0.6223 cm-1 is the spectral bin size of the undecimated 
spectrum.  Figure 4.2 shows the operation graphically.  The 
resulting estimate is an over-sampled spectrum nearly identical 

to the original (less the out of band noise, etc.).  An estimate of the original, undecimated interferogram was then 
recovered by deconvolving the digital filter coefficients, b: 
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Figure 4.2  Spectrum of the up-sampled decimated 
interferogram (grey) and the portion remaining after 
filtering (red) with a simple window (blue). 
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The estimate was phase shifted by the length of the filter, Nf, which must be accounted for prior to jitter correction, but 
otherwise a good estimate of I(n).  The correction was calculated from Î(n) as described in section 4.1.  
 

4.2.2 Computing the Correction Directly on the Decimated Interferogram and Angles 
As previously stated, if the extent of the filtered signal spectra is less than the sampling frequency of the re-sampled 
sequence, the entire spectrum is shifted to the new baseband.  Furthermore, if the maximum frequency of the tilt errors 
is small compared to the width of the filter window, it can be treated as a constant in the convolution, and the filtered 
interferogtam can be written: 
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The angle is delayed by Nf/2 to account for a phase in the filtered spectrum.  This technique should be effective for low 
frequency disturbances, less than half the sampling rate divide by the filter length, Fs/(2 Nf) ≈ 250 Hz.  The decimated 
interferogram can then be written: 
 

 

( )

( )
.

)(
8

)2/(
)(

)()(
8

)2/(
)()()(

2
,

222

,

0
2

222

0

z
nINna

nI

mnK
z
Imb

NnKa
mnKImbnI

dof
do

N

m

of
N

m
od

FF

∂
∂−

+≈

−
∂
∂−

+−≈ ∑∑
==

βπ

βπ

 

(4.12)

 
Like the previous case (correction of full-length interferograms), the errors are small, so we estimate the noise free 
decimated interferogram Io,d(n) with the measured, decimated interferogram, Id(n).
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Calculating the correction, ζd(n), requires an estimate of the down-sampled derivatives of the continuous interferogram 
from the discrete form.  The pth derivative of the continuous interferogram from the undecimated discrete version is 
given by 

 ∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛=

1

0

2
)(2)(

N

m

N
nki

p

p

p

ekS
N
kin

dx
Id π

π . (4.14)

 
The spectrum of the pth derivative, S(p)(k), is derived from the discrete version of the continuous spectrum, S(k), from: 
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In general, the utility of this approach depends on the noise in the continuous signal and the quantization accuracy.  For 
the interferogram correction discussed here, the noise levels are low enough for the first and second derivatives to be 
accurately computed.  When the interferogram has been down-sampled, an estimate of the derivatives proceeds the 
same way, but  the location of a spectral components must be identified in the original spectrum and multiplied by a 
powers i2π(k-1)/N in the original spectrum. Suppose N=KL is the size of the original interferogram.  The decimated 
spectrum, Sd(k),is directly transformed from the decimated interferogram by: 
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 Ib(k) was substituted from equation (4.5).  The original, filtered spectrum, Sb(k), is obtained from the filtered 
interferogram by: 
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Substituting, we get the down sampled spectrum in term of the original spectrum 
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The estimate of the down-sampled spectrum of the pth derivative of the original continuous interferogram is therefore: 
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and the estimated pth order decimated derivative of the original continuous interferogram is 
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It is essential to note that we are estimating the down-sampled derivative not the derivative of the down-sampled 
interferogram.  Figure 4.3 shows an example of the real and imaginary decimated corrections for the case of 250 Hz 
band-limited jitter centered at baseband, compared to the “measured” error (black line) for both correction methods 
discussed above.  The “measured” error was computed by differencing the corrupted, decimated interferogram with a 
jitter-free, decimated interferogram in the simulation. The correction calculated by up-sampling the corrupted 
interferogram and angles, and then decimating the results is plotted in red (points).  The correction calculated directly 
on the decimated interferogram and angles is plotted in green (circles).  Both compare favorably to the measured error 
with a small difference at the peak.   
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Figure 4.3  Real (A) and imaginary (B) errors, 1. measured (black line), 2. calculated by up-sampling the corrupted interferogram 
and angles, then decimated (red points), and 3.  calculated directly on the decimated interferogram and angles(green circles) 

A B

5. RESULTS 
We performed 72 case studies, examining six jitter power spectra (described in section 3), three correction methods 
(described in section 4), and four angle digitization scenarios (6-, 8-, 10-, and 12-bit resolution).  To simplify the 
evaluation, the results were classified using two simple figures of merit: 1. the mean noise ratio of the case at hand to 
the jitter-free case, and 2. the mean of the correlation matrix (including the diagonal).  These figures of merit do not 
necessarily determine the usefulness of an approach, but provide a method for evaluating results quickly and easily.  
Before an approach is implemented on CrIS, a more detailed analysis should be performed.  The results for all case 
studies are tabulated and compared to uncorrected and jitter-free interferograms in Table 5.1.   
 

Table 5.1  Mean NEdN ratio and mean correlation for all jitter correction case studies, a case with no jitter present, and a case when 
no correction was applied to the corrupted interferogram.  Highlighted cases are plotted below. 

Mean NEdN Ratio Mean Correlation
Jitter PSD

15Hz @ 
0Hz

15Hz @ 
450Hz

150Hz @ 
0Hz

150Hz @ 
450Hz

250Hz @ 
0Hz

250Hz @ 
450Hz

15Hz @ 
0Hz

15Hz @ 
450Hz

150Hz @ 
0Hz

150Hz @ 
450Hz

250Hz @ 
0Hz

250Hz @ 
450Hz

No Jitter 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
No Correction 8.20 26.88 17.78 26.11 6.59 23.84 0.48 0.83 0.48 0.85 0.51 0.86

Method 1 1.50 3.19 1.97 3.51 1.23 3.53 0.33 0.61 0.44 0.64 0.10 0.70
Method 2 1.51 3.14 1.99 3.46 1.23 3.49 0.33 0.61 0.44 0.65 0.10 0.70
Method 3 1.56 6.94 2.21 6.73 1.79 6.31 0.31 0.19 0.43 0.17 0.12 0.20

Method 1 1.10 2.82 1.49 2.86 1.13 2.85 0.07 0.56 0.32 0.52 0.03 0.54
Method 2 1.11 2.78 1.51 2.81 1.14 2.81 0.07 0.56 0.32 0.53 0.03 0.54
Method 3 1.10 6.87 1.69 6.64 1.66 6.27 0.04 0.14 0.21 0.14 0.02 0.12

Method 1 1.11 2.74 1.42 2.74 1.17 2.73 0.08 0.53 0.30 0.49 0.07 0.50
Method 2 1.12 2.69 1.44 2.69 1.17 2.70 0.08 0.54 0.30 0.49 0.07 0.50
Method 3 1.11 6.85 1.63 6.64 1.69 6.28 0.07 0.13 0.15 0.13 0.04 0.12

Method 1 1.13 2.72 1.41 2.71 1.18 2.71 0.09 0.53 0.29 0.48 0.08 0.50
Method 2 1.14 2.67 1.43 2.66 1.18 2.67 0.09 0.53 0.29 0.48 0.08 0.50
Method 3 1.12 6.86 1.63 6.64 1.70 6.28 0.09 0.13 0.15 0.13 0.05 0.11

6 bit Angle 
Digitization 

8 bit Angle 
Digitization 

10 bit Angle 
Digitization 

12 bit Angle 
Digitization 

 



 
Correction Method 1 refers to the correction discussed in section 4.1, before decimation.   Correction Method 2 refers to 
the technique discussed in section 4.2.1, after decimation and up-sampling the spectrum to use a numerical second 

derivative.  Correction Method 3 refers to the 
technique discussed in section 4.2.2, after 
decimation and calculating the second 
derivative analytically on the down-sampled 
interferogram.  The results indicate very good 
correction results in all cases, between 4- and 
12- times noise reduction.  When the noise was 
confined to baseband the corrections were able 
to get within a factor of two of the jitter-free 
noise when angles were digitized with 8- or 
more bits.  There was a slight fall-off when 6-bit 
resolution was used.  When a tone was 
simulated, the correction still reduced the noise 
by about a factor of ten, but only achieved the 
noise floor to within a factor of approximately 
three.  Again, digitizing with more than 6-bits 
produced slightly better results.  As expected, 
Method 3 had more difficulty with the higher 
frequency jitter cases.   
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The NEdN after correction is plotted for one 
jitter case, highlighted in Table 5.1, along with 
the uncorrected and jitter-free NEdN cases.   The 
noise correlation matrix is also shown 
graphically.  Each correction used angles 

digitized with 8-bit resolution.  Figure 5.1 shows the NEdN of interferograms corrupted with 250 Hz band-limited jitter 
at baseband before correction (black solid) after correction Method 1 (blue), after correction Method 2 (green), and after 
correction Method 3 (red).  Also plotted is the NEdN of jitter-free interferograms (black dotted).  The corrections all 
reduce the noise down to the jitter-free case.  There is a small increase in noise around 950 – 1050 cm-1 when Method 3 
was used.  Figure 5.2 shows a graphical representation of the noise correlation matrix for each correction method.  
Some areas of strong noise correlation exist between 950 and 1100 cm-1 when Method 3 is used to correct jitter errors.  
All other regions for all three methods are uncorrelated, indicating the correction reduced the errors below the 
detector/electronics (white) noise floor. 

Figure 5.1  NEdN of interferograms corrupted with 250 Hz band-
limited at baseband jitter before correction (black solid) after 
correction Method 1 (blue), after correction Method 2 (green), and 
after correction Method 3 (red).  Also plotted is the NEdN of jitter-free 
intreferograms (black dotted). 
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6. SUMMARY 
Mechanical disturbances imparted to the Michelson interferometer within the CrIS sensor can cause errors in the 
alignment of the interfering wavefronts.  These dynamic alignment fluctuations cause the modulation efficiency to jitter 
during the time an interferogram is collected, and manifest as noise in the measured spectrum.  The disturbances may 
originate from within the sensor or from other mechanisms on the spacecraft to which it is affixed.  To mitigate these 
affects CrIS will employ a laser to monitor and dynamically correct low frequency errors.  A vibration isolation system 
will damp higher frequency disturbances imparted to the sensor from the spacecraft.  Despite these efforts residual noise 
may remain under certain conditions and so a method for correcting DA noise is desirable. 
 
This work demonstrates an algorithmic technique to correct DA errors.  The technique requires only the time-dependent 
wavefront angle, sampled coincidentally with the interferogram, and the second derivative of the erroneous 
interferogram as inputs to compute the correction.  The technique can function with raw interferograms on board the 
spacecraft, or with decimated interferograms on the ground.  Two methods for calculating the correction on decimated 
interferograms were explored, recovering an estimate of the raw interferogram to compute the numerical second 
derivative, and computing it analytically directly on the under-sampled data.  The analytical technique is much less 
computationally intense, but only functions well with low-frequency jitter, less than about 250 Hz.  We tested all three 
methods using simulated CrIS data.  We evaluated the noise statistics of the calibrated spectra, the standard deviation in 
each spectral bin and noise correlation matrix, to determine the effectiveness of each approach.  All three techniques 
were able to reduce the dynamic alignment jitter noise by approximately a factor of ten when the noise was band-limited 
to less than 250 Hz.  When the noise was modulated with a 450 Hz tone, computing a correction directly on the 
decimated interferogram did not work as well, as expected, but still reduced the noise by a factor of about four.  
 
The correction could be implemented either on-board the spacecraft or before calibration algorithms are applied to the 
data during ground processing.  There are drawbacks and benefits to each approach.  A system level trade study 
considering, the correction algorithm performance, the required amount of data communicated to the ground, and the 
computing power required on-board should determine the eventual implementation strategy.  On-board the spacecraft, 
prior to decimation, there is access to the raw (20736 LW points) interferogram and angles to make a correction.  Both 
correction methods after decimation (864 LW points) require an FFT calculation, and practically would only be 
implemented on the ground.  Ground processing may require a small amount of additional data communicated to the 
ground in the form of digitized DA angles.  The exact amount of data required depends on the frequency and resolution 
of the digitized data.   
 
The current simulation was performed with DA angles digitized to 6-, 8-, 10-, and 12-bits.  There was approximately a 
25% improvement in the performance of the correction between 6- and 8-bits digitization, and no improvement 
thereafter.  The simulation provided the exact coincident angle at every point in the raw interferogram, and decimated 
angles when correcting decimated interferograms.  Both interferograms and angles were decimated by the same factor 
in this study, 24.  Using this benchmark, and considering CrIS collects 34 interferograms every 8 seconds, it is possible 
to make the correction on the ground with an increase of about 29 kbps.  This represents less than 2% increase in the 
total data rate (1.5 Mbps).  Although not demonstrated here, it may be possible to further reduce the data rate (by a 
factor of 2 or more) by down-sampling the angle data to the Nyquist rate prior to down-link. 
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